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1. Introduction

Optical solitons is a very important and thrilling
area of research in the field of nonlinear optics [1-31].
The non-linear effect in a quadratic media is the second
harmonic generation (SHG). A pump wave at the
fundamental harmonic (FH) generates a second
harmonic (SH) with double frequency. This SHG
phenomenon is recoverable from Maxwell’s equation
with quadratic non-linearity. The solitons in quadratic
nonlinear media are studied in optical switching, optical
routing, lasers with quadratic non-linear crystal, and
others [1, 4].

1.1. Gowerning equation

For quadratic nonlinear media, with inter-modal
dispersion (IMD) and spatio-temporal dispersion (STD)
is given by [1]

1q; + @105 + b1y + 010 T R1q'T = layg,,
@)
ir, + a,r,, + by, + cor + koq* =ia,r,.

@)

Here, g(x,t) and 7(x,t) represents the wave
profile of the FH and SH components respectively. The
independent variables are X and t that are spatial and

temporal variables. The coefficients of group velocity
dispersion (GVD) terms are @; with [ = 1,2 for the two
components. Then, the coefficients of STD are b;. The

coefficients of the quadratic nonlinear terms are k; while the
IMD terms are on the right hand sides of the two

components and are given by the coefficients of &;. It was
pointed out during 2011 that the inclusion of the STD makes
the governing NLSE well-posed as opposed to the
consideration of GVD alone, in which case, the model
problem remains ill-posed [2, 3]. The first term for both
components represents linear evolution.

During the past few years a lot of research was
conducted on quadratic nonlinear media and therefore many
results were reported during the past couple of decades [4—
19]. Very recently, exact bright and singular 1-soliton
solution was obtained for quadratic nonlinear media in
presence of GVD only and also without IMD [4]. This paper
is thus extension and generalization of those previously
reported results. Extended trial equation method [20-24]
will be the integration tool employed in this paper. Bright,
dark and singular solitons will be obtained along with
necessary constraint conditions that guarantees the existence
of solitons and other form of waves.

1.2. Mathematical analysis

In order to integrate Eqs. (1) and (2), introduce the
hypothesis [4, 25-27]
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g(x, t) = Py[&(x,t)]explig(x,t) ], €)

r(x,t) = P[§(x, t)]exp[2igp(x,t)], (@

where P;(&) for [ = 1,2 represents the amplitude
component of the soliton and &(x,t) = B(x — vt),
while @(x, t) gives the phase with

¢l(x,t) = —kx+ wt +6. (5)

Here, the constant coefficients of B, v, i, @ and & are,
respectively, inverse wave width, wave velocity, wave
frequency, wave number, and phase constant.
Substituting (3), (4) and (5) into (1) and (2) and
decomposing into real and imaginary parts gives

(a)+ a K’ —blKa)+a1K—C1) P+

(bv—a,)B°R —kRP, =0,

(©6)

and
2a,k—b,wta,
v T e ™
respectively, from the first component. Fromthe second
component, one obtains

(2a)+ 4a,Kk* —4b, ko + 20K — Cz) P, +

, , @)
(b,v-a,)B"P, —k,B” =0,
and
_ Gdgr—2bqwt g
T Zhge—1 ©

Equating the speed of the solitons of the two
components from (7) and (9) gives

4x* (b, —ab) +x{2a)b, —a,b, - 10
2(a, - 28,)}+ (B, —2b,) + (e, ;) =0.

Setting the coefficients of independent parameters
tw and K yields

a, = 2a,, (11)
by = 2b,, (12)
@y = az. 13)

Therefore, one can naturally define

a, = 2a, a,=a (14)
b,=2b, b,=b (15)
fy = a; = . (16)

Consequently, speed of the solitons for both
components simplify to

dax—2bwta
v=— 17
2brk—1

Also, real part components modify to
(a)+ 2ax” — bk + aK—Cl) P+

2(bv—a)B?P, —k PP, =0,

(18)
and

(260+4a1c2 —4bxw + 2aK‘—C2) P, +

(bv—a)B’P, —k,R’ =0,

(19)

respectively. Additionally, the governing model equations
(1) and (2) simplify to

iq, + 2aq,. + 2bgq, .+ ciq + kyqg'r = iag,., (20)

ir, + ar,, + br,, + c,v + k,q* =iar,. ()

These equations will now be analytically solved for
bright, dark and singular soliton in the following section.

2. Extended trial equation method

This section will apply the extended trial equation
method to handle Egs. (20) and (21). For solutions to (18)
and (19), the following assumptions for the soliton structure
is made

Py =Xy 7YY e2)
P, =X, ¥, @3)

where
()2 = A(W) = F0F) _ ug ¥ 24)

Y(¥) g WP Fhry

Using the relations (22)-(24), one can derive the
terms P, and P, as below:

p, - LY - O ) (§ip |
' 2Y* (V) =2

DY) (< . @
W(Zl(l—l)fi\y j,

i=0

and
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2 2Y%(¥)

i=0

b - @'(‘P)Y(\P)—@(‘P)Y'(‘P)[iimilj+
(26)

D(P) (i qyzpi-2
W[Zl(l—l)fi\y j,

i=0

where ®(%¥) and Y(¥) are polynomials of ¥. One
can reduce Eq. (24) to the elementary integral form
_ — |Yl‘[-"]l
¢ = = m =/ Jemd? @
Using the balance principle, One determlnes a relation
of @, P and ¢ as

¢=¢=

—p—2 (28)

Case-1: When ¢ = 3 p=0and ¢ =¢ =1 in Eqg.
(28), we gain

P, =1 +1,%, (29)
P, =1, +1,¥, (30)
and
N T T LT
Pj_." = L - s 'u_}.r (31)
‘-xl:l
(S, W2 P,
P:." = L ,..x s #_}.r (32)
]

where g #* 0 and ¥y # 0. Substituting Egs. (29)-(32)
into (18) and (19), and solving the resulting system of
algebraic equations one recovers

Tgfllo (201 - Cz)

M 2B (a-bv) (07, - 1,7,)
1 = ToT1 X0 (2C1 - Cz)

*2B*(a-bv)(nf, — 7,7
1, = T4 X (201 - Cz)

6B (a—bv) (7,7, —7,7,)
_ 2x(a+2ax) -,

2(2bx -1)
_ T (c,—2c,)
' 2(7,7, —747,)

. = 77 (c,-2c,)

4z, (Tlfo - Tofl) ’

Ho = Hyy To =T
T, =0,,Ty =1y, T;=10 33)
Substituting these results into Eqgs. (24) and (27), we

obtain

N e &%
T(E— &) =Wy .r ﬁ’ (34)
where
Hz Mg Mz fg

Integrating (34), one obtains the traveling wave
solutions to Egs. (20) and (21) as the following:

When A(¥) = (¥ — 4;)?, plane wave solutions are:
AU
2
B X_(4ax—2ba)+a]t e
2bx —1
exp| i{—ix+ 2K(a+236) =6, |y, g ,
2(2bx—1)
AT\,
2
B X_(4az<—2ba)+a]t _e
2bx —1
exp| 2i< —xx+ 2c(a+23K) =G, 1 gl |
2(2bx—1)

When A(W) = (¥ — -11]2 (¥ —4,) andA; = 4, one
recovers dark solitons:

a(x,t) =17y + 4, +

(36)

r(x,t) =<7, + 5,4 +

@7

.+ 1,4, +7,(4, — A,) tanh?

axt =111 [3 -4 B X—[4aK_2ba)+ajt iy
2\ W, 2bx 1 °
xexp{i{—xx+(%jt+0ﬂ,
o
£, + 54, +7,(4, — 4,) tanh?
rxt) =111 [2,-4, B X—(4aK_2bw+a]t e
2\ W, 2bi—1 °
xexp |:2i {—KX + ( ZK(Z(;bzaKi)_ C2 Jt + GH.
o

When A(®) = (¥ — 1) (¥ — 4,)°
singular solitons are recovered:

(39

(39)

and ‘;Ll = .-12
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T, + A4+, (4

— A,)cosech?

a8 =1B [4-4 .
2\ W,

(4ax—2ba)+a

2bx -1

. 2x(a+2ax)—c,
xexp|id—xX+
2(2bx -1)

£, + A, +7,(4, — A,)cosech’

dax -2bw+«

]

(40)

r(xt)= B [A4-4,
2\ W,

|

2bx -1

xexp| 2i4 —kXx+ 2x(a +2aK) =G,
2(2b—1)

(41)

|
]

When A(Y) = (¥ — 4,)(¥ — 4;) (¥ — 45) and

Ay = A, = A3, Jacobielliptic function solutions are:

f 0y + 1~ o0’

. 5 X_[4ak—2ba)+ajt B
F- M 2bx -1
qxt) =4 2\ W,
S
P
L A=A

e

2(2bx —1)

o

{ _(4a/c—2ba)+a

2bx -1

7o+ g+, (4~ Ag)sn’
w2
r(x,t)= W,
F g
/12 A=Ay
A=
2k (a + 2ak) -
><exp[2|{—zcx+( 22 1)

Note that 4; (i =
polynomial equation

“Joef

]

42)

i)

43)

1,2,3) are the roots of the

A(¥) =0. (44)

When Tg = —T;4y, Tp=—T44; and § =0,
solutions (36) - (41) are reduced to plane wave solutions

2

_ A
G0t = daxk - 2bo+a
E{X_( 2bx—1 H )
exp{i{—zcxjt(ZK(aJrzaK)_czJt+9H,
2(2bx 1)
r(x,t) = A
daxk —2bw+
B{X_( 2brc-1 H “)

exp| 21 —xx+ 2x(a +2ak)—c,
2(2bx-1)

bright 1-soliton solutions are:

]

cosh? (B{x—(thD )
exp{i {—K‘X+(2K(a +2aK) =G, jt +0H,
A

2(2bx—1)
dax —2bw+a
cosh? (Bl [x _(2bzc—l)tD (48)

exp {Zi {—K‘X + [ 2x(a +2axK) — ¢, jt + .9H ,

2(2bx —1)

q(x,t) =

r(xt) =

and singular 1-soliton solutions

A

. dax —2bo+«a
exp[i {—KX-%—(ZK(O{ +2aK) =G, jt +0H,

2(2bx —1)

q(x,t) =
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r(x,t)= A
sinh? [Bl [x—(WJtD (50)
2bx -1
exp {Zi {—K‘X + [ 2rc(a+2aK) - C, jt + HH :
2(2bx 1)
where

A=2Jt\W,, A=r,(,-4), A=t(L-4)

A=2JEW,, A=7(L-4) A=f(h-4),
B =2 /—’11_’1?.
2\ W,

Here, A,, A; and A,, A3 are respectively the
amplitudes of 1-solitons and singular solitons, while 54
is the inverse width of the solitons. So, the solitons exist
for T, >0 and T, = 0. Furthermore, when
Tg = —Tyd3, T = —Ty43 and § =0, the
solutions (42) and (43) are simplified as

axt) = AAS”ZEBJ' [X_Fa’(z_bzzcb—wlmjt}’z:ﬁ

exp[i {—KX + [M]t + 9}:] ,
2(2b—1)
(52)

r(x,t):&snz[sj {X_(4ak—2bw+a)t} /12—13]

(51)

2bx—1 Ay
exp{Zi{—KX+[2K(OHZaK)_CszHH,
2(2bx -1)
(33)
where
A=1(h-4), A=0(4L-4)
j (54)
Bj:(_l) B ﬂl_ﬂ’s’ (j=2,3). >
2 W,

Remark-1: When the modulus I = 1, dark soliton
solutions emerge:

) dax —2bw+
q(x,t) = A, tanh (Bj [X_(thD

(55)
expl i{—xx+ 2K(a+23K) =G, | g ,
2(2bx—1)
r(x,t):A4tanh2[8{x—(wth
2bx -1
(56)

exp| 2i{ —xx+ 2r(a +2aK) —C, t+0! |,
2(2bx—1)
where 4, = 4,

Case-2: When @ =4 p =0 and ¢ = 2 in Eq. (28),
one obtains

P,=1,+ T, ¥ +1,¥7 7)
P,=1,+,¥+1,¥? (58)
and
b _ (7, +27,¥) (410, ¥° + 3, W% + 211, + 1) N
), =
27(0 (59)
A4z, (V" + 1V + 1,7 + Y + 1)
2% ’
b _ (7, +25,¥) (41, ¥° + 3,97 + 21, + 11,) .
) =
A7, (P + 1Y + 12 + Y + )
27, '

where g = 0 and ¥; F 0. Substituting Egs. (57) - (60)
into (18) and (19), and solving the resulting system of
algebraic equations, one recovers the following results:

Ayt 77, (2,7 — 122,77 )

M= T 0 it + 4800
124107, 75 (7,77 +47,7; )
Mo = T 100 1707 + 48027
_ 32u,75 1,75
M =T 120,0,75 + 48cE
_ 164,7,7,
M= e 100 1 e + 48027
o 96,,7°B*(a—bv)
I (e —120,7,807; + 48007, )
_ 2x(a+2ax)-c, _ 2K,7)
o 2(bk-1 Ot @2
Ho =My, To=Ty, T,=Tp T3=10,T,=0,

R s 7, [ 4k,z,7, +f2(c2—2cl)l

) 61
7, 0 4k2r22 (61)

1
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Substituting these results into Egs. (24) and (27), we

have
rke o

T¢ %) =W | =5 (62)

where
o —
AW)=wiilepip g2 iy oy = X
Mg Hy Hy Ha “qi’-’h
(63)

Integrating (62) and taking £5 = O, we obtain the
traveling wave solutions to Egs. (20) and (21) in the
forms:

When A(¥) = (¥ — 4,)*,

W2
5 X_(4az<—2ba)+ajt
2bx -1

exp{i {—KX + 21(a+2a) - ¢, ]t + HH :
2(2bx—1)

q(x,t) = er A+

(64)

]

=ik B[X_(4ax—2ba)+ajt}
2bx -1
exp{Zi {—KX-F(ZK(Q +236) =G, Jt + GH
2(2bx~1)

When A(P) = (¥ — 4,)° (¥ — 4, ) and 4, = 44,

(65)

]

2 W, )
;TJ & ) dax -2bo+a 2
4w, - B(A—%)[X—[H

2bi -1
exp| i kX + Aat2)-6, |, ,
2(2bc—1)

qxt)=

(66)

- A5 (4, - 4)
d)=>r ;
i sz; | ) dak -0+«
82| B2, -7, x—(]t

2bi-1
exp| 214 -k X+ Ao+ 2a0)-¢, t+0¢|.
2(2bx-1)

(67)
When A(®) = (¥ — 4)*(¥ — 1,)*,
j
2 by =4y
G0ct)= 27| 4t
i exp[B(ﬂl—ﬂQ){X_(4ax—2bw+a)tD_l
W, 2bx -1
eXpH—KH M]HHH,
2(2bk-1)
(68)
N b=
I’(X,t)—;fj /12+exp B(ﬂi—ﬂ,z){x_[4ak—2ba)+a]t} »
W, 2bic -1
exp[Zi{—xx+[th+0}:|,
2(2bx -1)
(69)
and
R A=ty
q(x’t)_jz::; ! Mex B(ﬂi—iz)[x_(4ak—2ba)+ajt} B
Pl w, 2bi -1

exp[i {—K‘X+(th + HH
2(2bk 1)

(70)

- L1
H=Y%
r(xt) ;fj ﬂﬁexp[B(Ai—@){X_(4ax—2bw+ath_l
W, 2bx -1

exp[Zi {—xx{wjt + HH
2(2bx-1)

(71)
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r(xt)=
(A =4)4 %) 1

%iiﬁﬁq

2,)s’ [ -

1

(75)

2

When A(¥) = (¥ — "11]2 (W — A ) (¥ —A43) and
";l’l = ;'Lg = ..;l.a,
J- A0 -L)A-4)
, | A (hed)
axt)=>r 1
| Ry
i 2k(a +2aK) -C,
xexp{l {_KH[Z(Zb:—l)Cjt . 9H
(72)
o Mih)
A
r(Xlt)Zij 1
) cosh B (’11_’12)(/11‘%){X_(%K—Zba)wjt}
W 21

xexp{Zi {—KX-I-[MJI + 0“
2(2bx-1)

when

AMW) = (¥ - )P - ) (¥ - 3)(¥—4y)

and.ll f}ﬂ,: 3}.13 = .14’

(73)

q(x,t) =
PR A Y 1
D=y + (2~ 4, )sn? [ B (ﬂq—ﬂem—m]
>, .

o

=

4> J>
\_/

Xexp i{—/cx+(%]t+9}],
I 2(2bk-1)

(74)

ﬂx (4ax2b’2(bci+aﬂ(ﬂ? A aj

XEXP

2id —kx + % t+0
2(2bx -1)

Note that 4; (i =1,...,4) are the roots of the

polynomial equation
A(¥)=0. (76)
Remark-2: When the modulus I = 1, singular solitons
emerge:

q(x,t) =

(A-24)(4 —4)
A /1+(Al A,)tanh?’

A, +

' { (4 - ﬂg)(z? ﬂ)]

4a/< 2bo+a jt
2bx -1

i {—KX (2/{(0{ +2ax)—c,

ngH, @

xEexp
I 2(2bx —1)
r(xt) =
(A -4) A —4)
2 Q-2+ (A —A,)tanh?’
2, 1
I )
+ W,
1
q (4ak—2ba)+a) D
X=| ——— |t
2bx -1
xexp| 2i {—KX+(MJI+9}:|,
| 2(2bx-1) (78)

where -13 = 14.
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3. Conclusions

This paper obtained solitons and other relevant
solutions to quadratic nonlinear media. The integration
algorithm is extended trial equation approach. Bright,
dark and singular soliton solutions are recovered. In
addition, plane waves and snoidal wave solutions are
also presented in this paper. These additional results are
being reported for the first time in this paper. The results
come with constraint conditions that guarantee the
existence of these variety of waves. This principle will
be further explored later to other areas of nonlinear
optics such as couplers, birefringence, metamaterials,
liquid crystals and others. The results of those research
are awaited at this time.
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